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1 Introduction

Geographic online social networks such as Foursquare, where users voluntarily signal their

current location, enable detailed studies on human movement. In this paper we analyse a

data set of transitions of Foursquare users between locations in three different US cities:

Washington, New York and San Francisco. To analyse how those transitions are structured,

we examine the aggregated network with the help of different community detection meth-

ods. They differ in the null-model they are based on: the configuration model, the gravity

model and the degree-constrained gravity model. They therefore reveal communities that

are influenced by different spatial and non-spatial factors. We use these three methods to

examine how mobility changes from day to night time in the three cities.

In Section 2 we first give some background on current paradigms in the analysis of human

mobility. In Section 3, we then introduce our methodology by giving an overview about

spatial networks and explain community detection with the three different null models. We

also introduce the Louvain algorithm, which we use in an adapted form for the computa-

tions of the communities in the actual data set. Subsequently, we describe the Foursquare

data set in Section 4 and give details about the aggregation of the spatial networks and how

we divide into night and daytime transitions. We then do the analysis on those networks and

describe the results in Section 5. In this section we both compare methodology and then try

to make qualitative conclusions about the three cities, comparing day and nighttime transi-

tions. We then end with a conclusion about our result and further research possibilities in

Section 6.

2 Human mobility in cities

The mobility of people and their movement in space has been fascinating for researchers

from different disciplines. First works on this topic date back to the works of Ravenstein in

1885 who investigated the laws of migration.

A common assumption that one can take with regard to human mobility is that it is hindered

by geographical distance. How exactly this relationship is to be mathematically formulated

is an open question that is highly relevant to applications such as urban planning and social

studies such as the investigation of the influence of wealth on mobility [14, 13].
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In the literature there can generally be found two different approaches to modelling the

dependence of mobility and distance:

The first group of models, referred to as gravity models, are inspired by Newton’s law of

gravity and argue that mobility is directly limited by the cost of physical distance [3]. This

has the outcome that flow of people decreases with increasing distance between places.

The second approach distances itself from the assumption that physical distance is an in-

tervening factor by itself but states instead that it is a surrogate for the effect of intervening

opportunities [2]. This theory assumes that the distance covered by humans is determined

by the number of opportunities (for example places of interest) within that distance, and

not by the distance itself. People attempt to satisfy certain needs by their journeys and

therefore their mobility is determined by the number and ranking of opportunities closer

than their destination. In contrast to the gravity models in which displacements are only

limited by distance, displacements are here driven by the spatial distribution of places of

interest and thus by the response to opportunities [12].

Generally, gravity models are easier to compute and therefore more frequently used. Nev-

ertheless, even if the nature of intervening opportunities is hard to capture, many studies

have shown that the second camp of models relying on the theory of intervening opportu-

nities has high explanatory power [4]. Noulas et al. have shown in [12], that variations in

human movement in different cities are predominantly due to heterogeneous distribution

of places across different urban environments which are a proxy for different densities of

intervening opportunities.

3 Community detection in spatially embedded networks

As network models represent connections between nodes and not their spatial relation this

type of model represents just the topology of relations. Nevertheless, most complex net-

works are spatially embedded and their connections cannot simply be explained by their

topology. Examples of this include transport networks, mobility networks or even social

networks. It is important to consider the importance of space for those spatial networks, as

space has a high influence on analysing both structure and processes on spatial networks.

In this work we will mainly focus on the aspect of community detection. We therefore

first want to introduce the concept and some properties of a spatial network following [9]

that we will use later in our methodology for community detection in a spatially embedded
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network derived from Foursquare user transition data in three US cities.

3.1 Spatial networks

A spatial network is a network for which the nodes are located in a space equipped with a

metric. Usually we consider Euclidean distance and a two-dimensional space, but this is

not the only possibility. The introduced characteristic just mimics that the probability of

observing an edge between vertices depends on the distance between them. This is true

because there is a cost associated with the length of an edge. This can also be true for

social networks that display friendship relations. The probability of those relationships

also decreases with growing spatial distance, without that being exactly encoded in the

network. Nevertheless, we will focus on networks in this work that have an exact location

in two dimensional space associated with each node, as our data set consists of coordinates

of Foursquare venues.

Due to the embedding in a metric space the network is equipped with a distance function

dpu, vq which measures the distance between nodes u and v. In our case this is the geo-

graphic distance between two locations, but other options like transportation time instead

of physical distance are possible.

3.2 Community detection

Community detection is an important part of complex network analysis. It aims to divide

the network into sets of nodes that have more connectivity among themselves than with

the rest of the nodes, the so called modules. It is not always clear what the best partition

into communities is. This is due to the fact that in contrast to other graph partitioning

methods, community detection aims to uncover the mesoscale organisation of a network in

an automated way and therefore the total number and size of communities is not a priori

known [11]. There are various methods that try to achieve this goal and most of them aim to

maximise a mathematical definition of the quality of a partition, the so called modularity. It

measures if links are more likely to be present within a community than would be expected:

Q “ (fraction of links within a communityq ´ (expected fraction of such links) (1)

For the mathematical definition of modularity it is important to define what the null hy-

pothesis for the model is, meaning how many links we would expect in a community. This

is represented by the matrix Pi j of a so called null-model. Its entries represent the expected
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weights of a connection between i and j over an ensemble of random matrices with certain

constraints [11]. The constraints are chosen depending on which structural properties of the

original network we want to conserve in the null-model to be able to assess the relevance

of certain partitions. Two basic considerations hold true in general for a null-model for a

weighted network, represented by its adjacency matrix W, whereas Wi j is the weight of the

link between i and j:

1. If W is symmetric, we choose P to be symmetric.

2. The total edge-weight w of the network is conserved:
ř

i j Wi j “
ř

i j Pi j “ 2w.

Mathematically we can define the generic modularity according to a specific null-model

represented by PNM as introduced in [15]:

Definition 3.1 (Generic Modularity, from [15]). For a weighted static network with adja-

cency matrix W, modularity is

Q “
1

2w

ÿ

i j

pWi j ´ PNM
i j qδpci, c jq (2)

where w “ 1
2

ř

i j Wi j is the total edge-weight of the network, ci denotes the community that

contains node i, the Kronecker delta δ is 1 if ci “ c j and 0 if ci , c j, and Pi j is the i j-th

element of the null-model matrix.

Q “ 0 is achieved if the number of within-community edges is no better than random,

Q “ 1 if the network has strong community structure [5].

In the following we want to introduce three null-models with different constraints that we

will use in this work to detect communities in our spatial data set to examine how different

spatial constraints change the nature of modules that are being detected. We follow the

work of [11, 16].

3.2.1 Configuration model

The most common null-model that that is used for the definition of modularity is the con-

figuration model which was introduced by Newman and Girvan (NG) in [6]. The configu-

ration model proposes to locate links at random in the network while keeping the degrees

of the nodes. In the case of an undirected, weighted network the expected weight of a node

is

PNG
i j “

kik j

2w
(3)
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with ki the strength of node i, which is defined as ki “
ř

j Wi j and 2w “
ř

i j Wi j is the

sum of all edge weights in the network as before. In this case we have the Newman-Girven

modularity given as

QNG
“

1
2w

ÿ

i j

pWi j ´
kik j

2w
qδpci, c jq (4)

The NG-modularity only constraints the node strength and only takes structural information

provided by the adjacency matrix into account. This is based on the assumption that the

given network is well-mixed and only connectivity of nodes matters for the probability that

two random nodes are connected. It does not take spatial effects into account. This is a

useful choice if we do not have additional information about the network available. It is

interesting that such null-models in community detection methods yield spatially connected

regions, and some regions coincide with administrative units rather well. For example ,

Cazabet, Borgnat, and Jensen reported in [16] that the communities obtained from bicycle

sharing data in Lyon match rather well the administrative borders of the city.

3.2.2 Gravity-based null-model

In spatial networks, higher distance between nodes strongly decreases the probability of

them being connected. The configuration model does not take any further information like

spatial distribution of nodes into account and therefore overestimates the probability of a

connection between two very distant nodes. To include the available spatial information, we

use the null-model introduced in [11] that is inspired by gravity models that are frequently

used in the transportation domain to repartition trips between different cities and areas [16].

A general version defines the null-model matrix as

PGra
i j “ nin j f pdi jq (5)

whereas ni is the intrinsic strength of node i, di j the distance between node i and j and f pdq

any deterrence function. The intrinsic strength measures the importance of node i an can

vary depending on the application and available information (e.g. population, number of

jobs, degree of node etc.). In settings when this is unknown the degree of the node is used

as a proxy for the intrinsic strength of a node [16]. In the traditional form of the gravity

model, the deterrence function is a priori defined as

f pdi jq “ d´γi j (6)
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whereas γ is an optional parameter, usually tuned by regression analysis [17]. However,

as shown in [11], the deterrence function does not have to be defined beforehand but can

directly be measured from the data:

f pdq “

ř

i, j|di j“d Wi j
ř

i, j|di j“d nin j
(7)

This is the weighted average of the probability Wi j

nin j
for a link to exist at distance d. Using this

deterrence function, the null-model takes into account the constraint that the total weights

between nodes at a certain distance is preserved:
ÿ

i, j|di j“d

PGra
i j “

ÿ

i, j|di j“d

Wi j. (8)

The conservation of the total weight of the network is therefore also given. In the following

we will denote the modularity using the gravity null-model as QGra
i j and use the deterrence

function learned from the data itself as defined in Eq. (7). This modularity, additionally

to topological structure of the graph, takes physical location of nodes into account and

therefore favours communities made of nodes that are more connected than expected for

their distance. Therefore, it is expected that it reveals communities that are formed by

nonspatial factors [11].

3.2.3 Connection between configuration and gravity-based null-models

If we use the degree of the nodes as a proxy for their intrinsic strength, i.e. ni “ ki, and we

assume that distance does not play a role i.e. the system is well mixed ( f pdq is independent

of d), using ki “
ř

j Wi j and
ř

i, j Wi j “ 2w we derive the NG null-model:

PGra
i j “ kik j f pdi jq “ kik j

ř

i, j Wi j
ř

i, j kik j
“ kik j

ř

i, j Wi j
ř

i, jp
ř

j Wi jqp
ř

i Wi jq
looooooooooomooooooooooon

1
ř

i, j Wi j

“
kik j

2w
“ PNG

i j (9)

Let us finally emphasise, that, as suggested in [11], there is the possibility to introduce a

mixing parameter ξ and interpolate between those two null-models to balance the impor-

tance of spatial and topological effects according to the relevant application. The interpo-

lated null-model then reads

Pi jpξq “ ξPNG
i j ` p1´ ξqPS pa

i j (10)

Taking a weighted model into account for tuning the influence of distance is a possibility

for future investigation that we will not take into account in this work.
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3.2.4 Degree-constrained gravity-based null-model

One draw-back of the gravity-based null-model is that there is no simple relation between

the intrinsic strength of a node ni and its actual strength ki “
ř

j Wi j. Therefore, if we do not

have information about the intrinsic strength of the nodes given by data about population

sizes or similar quantities, we have to take the strength of a node as a proxy for its intrinsic

strength. Then, the gravity null-model will not preserve degrees of nodes. Because the

observed strength of a node in a network generated according to the gravity null-model

depends both on its intrinsic strength and on its distance to other nodes, this model usually

systematically underestimates the intrinsic strength of nodes with few nodes around and

overestimate the strength of those located in the centre. This highly depends on the data set

we are working with and we will later see when looking at the Foursquare data sets that the

assumption about nodes in the periphery having generally lower degree is not always true

and highly depends on the functionality of the different localities.

We can measure the connection between degree bias and spatial distribution as suggested

in [16] by correlating the spatial eccentricity and the degree bias of the data set. In our

context, those two measures are defined as follows:

Definition 3.2 (Spatial eccentricity and degree bias). Given a network G with N nodes

i “ 1, ¨ ¨ ¨ ,N and distances di j between node i and j, the spatial eccentricity of node i is

defined as the average distance to all other nodes

eccpiq “
1
N

N
ÿ

j“1

di j (11)

The degree bias dbpiq for in and out degrees of node i respectively is defined as :

dbpiq “
degGMpiq
degDpiq

(12)

with degGM the degree according to the gravity model and degD the degree observed in

original data.

To eliminate this bias, a degree constrained gravity-based model was proposed in [16].

It is derived from the doubly constrained gravity model [20] and can be applied to both

undirected or directed networks. We will derive it here following [16].

The idea of the model is to find values for the Incoming estimated intrinsic strength nOeis

and the Outgoing estimated intrinsic strength nIeis that would best explain the observed

degrees. For undirected networks we have nOeis “ nIeis.
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This leads to an iterative method that estimates new values for those strengths while sat-

isfying the observed in-degrees degin and out-degrees degout in each step. The estimated

intrinsic strengths are initialised with the in- and out-degree and then computed as

nIeis
“

degoutpiq
ř

i nOeis f pdi jq
nOeis

“
deginpiq

ř

i nIeis f pdi jq
(13)

After computing those values, we can use them to calculate the matrix of the corresponding

degree-constrained gravity null-model that is defined as

PDCGra
i j “ nOeisnIeis f pdi jq. (14)

The modularity that is defined by this null-model will be referred to as QDGGra. We use the

same deterrence function as the gravity model as defined in Eq. (7). Nevertheless, it has

to be noted that the deterrence function also depends on the intrinsic strength of the nodes.

Therefore an approximation from the data using the degrees of the nodes as a proxy leads

to a biased approximation. We therefore recompute the function in each iteration to correct

this bias with the newly estimated intrinsic strengths.

This is iteratively done until the degrees in the Degree Constrained gravity model are close

to the target network. This procedure is known to converge [20], but as suggested in [16],

we use a fixed number of 5 iterations.

3.3 Community detection algorithm

One of the most widely used algorithms for community detection is the Louvain algorithm

[7]. This algorithm optimizes the defined modularity in a greedy fashion. It is therefore

adaptable to all of the notions of modularity that we want to consider. The algorithm is

divided into two phases that are repeated iteratively [7].

The first phase consists of the following steps:

1. Start with a weighted network of N nodes.

2. Assign a different community to each node.

3. For each node i, compute the gain of modularity if it is put in the same community

with each of its neighbours j. Put i in the community that gives maximal gain. If

there is no positive gain, i stays in its community.

4. Repeat this process sequentially for all nodes until no further gain possible.
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Figure 1: Visualisation of two passes of the Louvain algorithm. In each step, nodes are first being

assigned to modules to optimise the modularity and then a new network is created whose nodes are

the communities from before. From [7]

In the second phase a new network is build whose nodes are the communities found in the

first phase:

1. Weights of the links between the new nodes are given by the sum of the weight of

the links between nodes in the corresponding two communities.

2. Links between nodes of the same community lead to self-loops for this community

in the new network.

These two phase, collectively called a pass, can be reapplied until the maximum of mod-

ularity is attained. This builds a hierarchy of communities. The algorithm is visualized in

Fig. 1. In our work, we use the python-based implementation of [16], that adapts the Lou-

vain algorithm to take in different definitions of null-models and adapt this implementation

for our purposes

4 Description of data set

In the following section we want to apply the three community detection methods intro-

duced before to a data set of Foursquare user transitions between venues in three US cities.

The data set we are working with consists of 4-year-long data from Foursquare describ-

ing movements between places in New York, San Francisco and Washington. For each

Foursquare venue in a city, the data set contains the unique venue ID, the geometric lo-

cation (latitude and longitude), the general Foursquare category (e.g. nightlife spot), the

specific Foursquare category (e.g. bar), the total number of check-ins and the total number

of unique visitors. Additionally to the general venue information the data set contains all
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transitions of customers in the four-year time period. A transition is defined to be a pair of

check-ins by a single user to two different venues less than 3h apart in time [19]. Never-

theless, the transition data does not contain information about the identity of the user. For

each transition, we have start time and end time and source and destination venue ID.

As proposed in [19], we want to exclude all the venues that are added mistakenly or ma-

liciously. We set our cutoff value a bit higher then in this paper, due to computational

limitations of our implemented community detection algorithms and available hardware

and therefore excluded all locations that have less than 3000 total check-ins for Washing-

ton and San Francisco and less than 10000 for New York city, as the transition data set is

a lot richer. We choose those cut off values differently for the different cities to achieve

a number of locations that is comparable. We visualise the venues including the 5 places

with the most check-ins in the three cities in Fig. 2.

4.1 Aggregation to spatial networks

We aggregated the transitions for the relevant locations to an undirected, weighted network

for each city in the following way:

The network consists of nodes that represent the Foursquare venues. Node i and j are

connected by a weighted edge wi j if there were in total wi j observed transitions between

i and j in the four year period. To transform this into a spatial network we have to take

to following processing steps: We have data available about latitude and longitude of the

different locations. To make use of this spatial information for the computation of distances

between locations in metres (e.g. nodes in the spatial network) we have to project this into

a local coordinate reference system. Because of the cities location in Northern America we

project into UTM zone 18N.

4.1.1 Division in day and nighttime transitions

Because we are interested in the difference of formed communities at day and night, we

divide each transition network into two networks: The set of daytime transitions, that start

between 7 am and 7 pm, and the set of nighttime transitions, which consist of all the others.

It must be noted here that due to the definition of a transition to be a check-in at two

different places within a time frame of 3 hours, a transition that ends shortly before 10 pm

is still counted as a daytime transition here if it started before 7 pm. This includes e.g. main
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Washington Total number of locations: 730

Check-ins Location

299410 ’Ronald Reagan National Airport’
178748 ’Union Station’
70935 ’Nationals Park’
60116 ’Verizon Center’
57673 ’Gallery Pl-Chinatown Metro Station’

New York Total number of locations: 634

Check-ins Location

543442 ’New York Penn Station’
465646 ’John F. Kennedy International Airport’
410435 ’LaGuardia Airport LGA’
327828 ’Grand Central Terminal’
179738 ’Times Square’

San Francisco Total number of locations: 936

Check-ins Location

107392 ’ATT Park’
101098 ’Montgomery St. BART Station’
91834 ’San Francisco-Oakland Bay Bridge’
66008 ’Golden Gate Bridge’
58461 ’Westfield San Francisco Centre’

Figure 2: City statistics: 5 most checked in places and total number of locations in data set after

a cutoff value of 3000 total check-ins (San Francisco and Washington) and 10000 check-ins (New

York).

rush hour times for work in all three cities into the daytime data set

In the next two sections we first want to apply the three methods introduced before to this

data set.

5 Evaluation of the three methods on Foursquare data set

In this section, we want to investigate the performance of the three different community

detection methods on the transition networks derived from the data sets we introduced in
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the last section. In our analysis, we want to focus on three aspects

1. Examine the relationship between degree bias and spatial eccentricity for the three

cities.

2. Examine how the deterrence function that is learned from the data depends on bin-

ning distance and on outliers in the different data sets.

3. Compare how communities change from day to night time in the different cities.

5.0.1 Degree bias and spatial eccentricity

Even if we have information about the intrinsic strength of locations based on e.g. the total

number of check-ins ore unique users in this data set, we will assume that our model is un-

informed for this work and use the degree of the nodes as a proxy for their intrinsic strength

for QGra. By doing so, we want to evaluate the different performance of this null-model

compared to the degree-constrained gravity model. As explained in Section 3, in most data

sets the intrinsic strength of nodes in the periphery is systematically underestimated when

using node degrees as proxies as they have fewer nodes around then the nodes in the center.

To compute this dependence we introduced the notion of spatial eccentricity and the degree

bias in Definition 3.2. We now want to compute the correlation between those two values

for our three cities to see if we can observe such a dependency in our data sets as well.

This is not necessarily true for all data sets, as we can see when we compare the correlations

between degree bias and spatial eccentricity in our three data sets, split up in day and night

time. For that we compute these values as defined in Definition 3.2 for all the nodes and

then compute the Pearson correlation coefficient rXY that measures the linear relationship

between two data sets X and Y , whereas rXY “ 0 implies no correlation and correlations

of -1 or +1 imply an exact linear relationship. We can see in Table 1 that the correlation

of the spatial eccentricity and the degree bias highly varies for the three cities. For San

Francisco, there is a strong positive correlation which accounts for high spatial eccentricity

going along with high values of degree bias dbpiq “ degGMpiq
degDpiq , meaning that the degrees in

the periphery are getting significantly underestimated. This effect is less strong for New

York and hardly there for Washington DC.

We now want to look for possible explanations for the different correlations. If we look at

the most visited places in the three cities, displayed in Fig. 2, San Francisco has its main

attractions and most visited localities in the center of the clustering of all locations. in

contrast to this, New York’s JFK airport is a spatial outlier with high importance looking at
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Washington New York San Francisco

day 0.1461 0.4291 0.8223

night 0.1949 0.5132 0.7523

Table 1: Correlation of Spatial Excentricity and Degree Bias

the total number of check-ins, even though it is in the periphery. The same is true for the

Washington DC airport. This relates to Stouffer’s law of intervening opportunities in the

sense that some places with a specific attraction, e.g. special sights or an airport, are not

as easily replaceable as e.g. restaurants and therefore also suffer less from spatial effects as

the number of intervening opportunities is very low.

Even if this is an observation limited to the most visited places in the city and more analysis

would be necessary for a detailed analysis of spatial outliers with high node degrees in the

different data sets, it motivates the following observation: Nodes in the periphery often

have lower degrees because of less nodes around them if the data set consists of locations

that are homogeneous in functionality and therefore replaceable, such as bike stations of

a bike sharing network as in [16]. As our data set is functionally not homogeneous but

includes all different kinds of venues ranging from transportation hubs to restaurants, the

function has to be considered in the intrinsic strength of a node. A node that has a very

unique functionality such as a transport hub or a specific tourist attraction therefore might

lead to the effect that we have high node degrees even if the node is distantly very remote.

Summing up we can say, that correlation of degree bias and spatial eccentricity may differ

in a data set with functionally inhomogeneous nodes, because some locations are not easily

reparable by closer ones. This agrees with Stouffer’s law of intervening opportunities.

In any case, this motivates to use a degree constrained model for community detection

as it is taking this effect into account by constraining the degrees of nodes and therefore

systematically eliminating the degree bias, as explained in Section 3.

5.0.2 Deterrence function

In this section, we want to make some observations about the deterrence function

f pdq “

ř

i, j|di j“d Wi j
ř

i, j|di j“d nin j
(15)

that is learned directly from the data. This deterrence function is used for both QGra and

QDCGra, however the gravity null model uses the node degrees as intrinsic strengths, ni “ ki,
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(a) Washington QGra (b) New York QGra (c) San Francisco QGra

(d) Washington QDGGra (e) New York QDGGra (f) San Francisco QDGGra

Figure 3: Deterrence functions for the gravity model (left) and the degree-constrained gravity model

(right), binning distance 1km.

and the degree corrected null model the iteratively constrained values neis “
degpiq

ř

i neis f pdi jq
, as

described above. The two deterrence functions are displayed in Fig. 3. Looking at those

functions, we can observe the outlier effect we have discovered in the previous section. We

can see clear spikes for long distances in both the functions for New York and Washington

DC, whereas the deterrence function of San Francisco is more similar to a classical power

law of spatial dependency. This accounts for the fact that there are important locations

with high node degrees in a spatially distant position. One can also observe that the degree

constrained model partly eliminates those effects.

5.0.3 Dependence on binning distance

As highlighted in [11, 18], the evaluation of the deterrence function

f pdq “

ř

i, j|di j“d Wi j
ř

i, j|di j“d nin j
(16)

when measured from data is highly dependent on the binning distance d. The choice of

the binning of d influences the precision of the deterrence function. When working with

Foursquare data we are dealing with an incredibly fine granularity of the location data, with

GPS accuracy down to 10 meters. Nevertheless, as we evaluate the data set it might not

make sense to work with that high precision as the deterrence function does not bring clear
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distinguishing power for too high precision due to a lot of noise. A fitting binning distance

might vary for different city sizes and distribution of places. Therefore we compute the

deterrence function for binning distances of s “ 10, 100 and 1000 metres for all three

cities and show the results in the appendix in Fig. 9. We can see from the results that a

binning distance of 1km makes sense for our purposes as the noise in more precise bins

is negligible but the deterrence function preserves the main properties. We will use this

distance for the community detection below.

5.0.4 Qualitative Analysis of the cities at day and night

We now want to apply the methods to the data sets and compare the derived communities

for night and daytime transitions. As explained in Section 3, the three different null mod-

els take into account different properties of the networks and therefore discover different

communities in the data set. We visualise those communities in Fig. 6, Fig. 7 and Fig. 8. It

is already visible from these maps that the communities differ both for the three different

methods as well as for day and night time. From theory we would expect, that communities

for the configuration model are highly influenced by spatial factors and therefore spatially

more clustered than the communities formed by the gravity and the degree-constrained

gravity model. The latter ones are both governed by non-spatial factors whereas the de-

gree biases in the data set are eliminated for the degree-constrained model. Nevertheless,

we cannot make any conclusions about what is influencing the formation of the different

communities for the latter models as we do not have enough information about underlying

possible influences such as transportation routes or significance of certain nodes. It would

be a matter of further research to try to relate the formed communities to possible influences

in the different cities such as common work permutations etc. Nevertheless, we make a first

attempt here to measure the spatial extents of the communities under the different models

and times of day. For this, we compute the radius of gyration of the different communities,

that is defined as follows:

Definition 5.1 (Radius of gyration, from [8]). For a set consisting of n nodes p1, ¨ ¨ ¨ , pn

with centroid pcen “
1
n

řn
i“1 pi the radius of gyration is defined by

ri “

g

f

f

e

1
n

n
ÿ

j“1

pp j ´ pcenq
2 (17)

The radius of gyration represents the standard deviation of distances between points of a

trajectory and the center of mass of these points. A low radius of gyration indicates that
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Washington New York San Francisco

Figure 4: Weighted mean radius of gyration

transitions in a certain community are mostly locally while a high value of this metric

generally stands for predominantly long distance transitions [8, 10]. The results displayed

in Fig. 4 show a weighted mean of the radii. We weight the mean by the size of the

communities to not overestimate the influence of small communities. A more detailed

analysis of the radii of gyration for the individual communities can be found in the appendix

in Fig. 10. Generally we can see from these quantities that communities generally consist

of more locally bounded transitions at day than at nighttime. This might be due to the

fact that people work in the day and therefore generally do not make a lot of long distance

transitions. Further research is necessary to investigate this further.

If we want to compare the different community structures for night and daytime, we can

also look at the modularity values that were achieved by the displayed partitions. Hereby

it must be considered that a direct comparison of values for QNG, QGra and QDGGra is not

possible because modularity is a way to compare different partitions of the same graph and

so its absolute value is meaningless [11]. In general, the modularity is expected to be lower

when its null model is closer to the real structure of the data, as it is the case for QGra and

even more for QDGGra, because more constraints on the null model are added. This result

is observed in the computed modularities displayed in Fig. 5 (The precise values can be

found in the appendix in Table 3, Table 2 and Table 4). Nevertheless, the different cities

can be compared with each other for each modularity value individually. It can be clearly

seen in the tables, that the modularity values are higher for daytime than for nighttime

for all three methods. It must be noted that this seems to align with the previous result

that communities are more spatially extended during the night. This connection can just

partly be made, because communities in the two gravity-based models form mainly due

to non-spatial factors and therefore a higher modularity value for daytime in those models

is not expected to go along with higher spatial clustering. Nevertheless, those results are

interesting as they suggest that the higher modularity values at daytime might come from

somehow more structured transition patterns during the day. We cannot draw conclusions
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Figure 5: Modularity values of derived communities for the three different null models

about the reason for this and further investigation would be necessary if it is for example

due to work transitions vs. leisure activities.
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Figure 6: Communities for Washington DC for daytime (top, 725 nodes, 14645 edges and 31017.0

trips) and nighttime (bottom, 730 nodes, 27982 edges and 52594.0 trips)
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Figure 7: Communities for New York City for daytime (top, 633 nodes, 23883 edges and 62569.0

trips) and nighttime (bottom, 634 nodes, 38934 edges and 90256.0 trips)

Figure 8: Communities for San Francisco for daytime (top, 936 nodes, 10628 edges and 17708.0

trips) and nighttime (bottom, 939 nodes, 37093 edges and 60957.0 trips)

19



6 Conclusion

In this work we have presented three different null models for community detection and

have applied them to a data set of transitions between different localities in three US cities.

We have shown, that there are significant degree biases in the data set that come from

outliers with unexpected high node degrees that have to be considered in the analysis and

therefore the application of a degree constrained model is senseful when using node de-

grees as proxys for their intrinsic strength. Our new observation was, that this does not

necessarily have to come from lower node degrees in the periphery but can also be biased

by the functional heterogeinity of our data set, in which outliers like airports or main sites

of a city highly influence the commutation of people, disregarding the spatial distance. We

also saw that the modularity values for all three methods are generally higher for daytime

than for nighttime. We cannot draw any general conclusion from this yet as the underlying

influences on the community formation when spatial effects are eliminated are unclear and

vary for different cities and importance of localities for different day and nightimes. Fur-

thermore, the spatial extend of the communities, measured by the radii of gyration, is higher

at night than at day for all the models. In further research this can be explored further with

regard to possible explanations of those patterns. It could be explored if more connectivity

is caused between certain boroughs due to work flows. It would be also interesting to ex-

amine how the probability of transitions between various types of establishments changes

as function of day vs. night. Maybe nighttime communities are more facilitated by social

interactions (so clubs to bars, etc.) vs. daytime communities (facilitated by workplaces to

cafes, workplaces to workplaces). This could be a first step towards an explanation for the

different spatial clustering that we observed in this work.
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Washington New York San Francisco

day 0.4591 0.4473 0.4734

night 0.3964 0.3929 0.3758

Table 2: Modularity Configuration Model

Washington New York San Francisco

day 0.4087 0.4022 0.4536

night 0.3964 0.3495 0.3279

Table 3: Modularity Gravity Model

Washington New York San Francisco

day 0.3975 0.3705 0.4309

night 0.327 0.3272 0.2989

Table 4: Modularity Degree constrained Gravity Model
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(a) Washington (b) New York (c) San Francisco

Figure 9: Binning distances for the deterrence function learned from the data sets of the three cities

for bins of (from top to bottom) 10m,100m,1000m
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Washington day Washington night

New York day New York night

San Francisco day San Francisco night

Figure 10: Radius of gyration for all the communities
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